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Factorisation of Backlund transformations 
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Centre for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, 
U9A 

Received 18 September 1987 

Abstract. The factorisation of the L operator in a Lax pair {L, P} has played an important 
role in the theory of integrable systems. For example, the Miura transformation can be 
immediately obtained from the factorisation of the Schrodinger operator; -3: + U - kZ = 
(-J= + a)(a, + b )  requires that U = k 2  - a,y +.'and a = b. Forzero curvature representations 
this procedure is not available, however. In this paper we attempt to produce an analogous 
theory of factorisations for zero-curvature representations. 

1. Factorisation of zero-curvature representations 

Consider the Zakharov-Shabat-Mikhailov zero-curvature representation of a solvable 
non-linear equation [ 1,2]: 

Y, = P( k) Y y, = Q ( k ) Y  (1.1) 

where P (  k) and Q( k )  are matrix-valued functionals of the variables in the solvable 
equation and which also depend upon a spectral parameter k. Then, as is well known, 
provided (1 . l )  is isospectral (k, = 0) the condition of integrability of (1 .l) is equivalent 
to the associated solvable equation being satisfied. Since the solvable equations admit 
auto-Backlund transformations (ABT) we can represent the equation by { P, Q }  where 
(Pi, Qi) E { P, Q }  satisfies the zero-curvature equations of type (1.1) with the fundamental 
solution Y, .  

The auto-Backlund transformations are defined by k-dependent gauge transforma- 
tions of (1.1). If we start with the solution ( P o ,  Qo) then define 

Yi(k)= T ( k ) Y o ( k )  (1.2) 

PI T = ( T, + TPo) (1.3) 

and the new solution (PI,  Q1) E {P, Q }  is given by 

91 T = ( T, + W O ) .  

The gauge transformation T takes values in GL( n) so that we can use the standard 
decomposition theorems to factorise T. In particular the Gauss decomposition gives 

T = A-A+ (1.4) 
where A+ is upper unipotent (ones on the diagonal) and A- is lower triangular. This 
factorisation implies the existence of an intermediate equation { P ' ,  0') in the sense of 
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932 R K D o d d  

where we have written { P o ,  Qo} = { P ,  Q}. In all diagrams arrows will indicate maps 
between the fundamental solutions of the zero-curvature representations. However, 
unless the components of A+,  A- satisfy some non-trivial conditions the equation 
{ P I ,  Q'}  is empty. The nature of these conditions is revealed in the example below 
which is based on the AKNS system [3]. Let E,  = ( S u i S j v ) I s u , v s n  be the n x n matrix 
with 1 in the ijth entry and zero elsewhere. 

1.1. The AKNS system 

1.1.1. The ABT for the A K N S  system. The AKNS zero-curvature representation involves 
elements of sl(2, C ) .  Define h : =  E l l - E 2 2 r  e : =  E I 2 , f : =  Ez l  and adopt the convention 

A+( a )  := Ell + aE12+ E22 A - ( b ,  ~ , d ) : = b E l I + c E z l + d E , 2  
then 

PP(k)  = kh + q,e+ rf QP(k) = A , ( k ) h + B , ( k ) e + C , ( k l f :  (1 .5)  
Assume that 1q,1, Ir,l+ 0 as 1x1 + 00; then solving (1.3) for linear in k we find that 

the Backlund transformation is given by 

~ 1 9 o , x - ~ 2 q I , x  = ~ 4 1 P 2 - 4 0 P 1 ~ + ~ 9 1 ~ 2 + 9 0 ~ I ~ J 1 0  

ulrl,x - u2r0,x = (r lPl-  roP2) - ( r l u l +  rou2)Jlo 
(1.6) 

where Jl0 = (qlrl  - qoro) dy and U,, p ,  are constants. The transformation is defined by 

+ [ u2k + f ( P 2  + V 2 J l O ) l  E22. (1 .7)  

A;':= A+( ao) A i o  := A-( bo, codo) (1.8) 

G:= [ ~ l k + t ( P l - ~ 1 J l o ) l ~ ' l + ~ ( q o ~ l - 4 l ~ 2 ) ~ l 2 + 1 ( r l ~ l -  rovz)E21 

Then 

are uniquely defined by (1 -4). 

which are obtained upon restriction, 
The transformations (1.6) contain the elementary Backlund transformations [ 4 ] ,  

9 O . X  = P2ql -p140- r1qiPq-I 

PI = Pl/Vl P2 = P 2 I U l  U 2  = 0 

A I  =PlIu2 A 2  = P2I U 2  Ul = 0. 

r1.x = P I T I  -P2rO+r:qoP.;l 
(1.9) 

(1.10) 
2 

41.x = A1qo-  A 2 q l -  Ai'roq, ro,x = A2r0 - A I  rl + A;' ql 6 

Notice in equations (1.6), (1.9) and (1.10) only the x part of the ABT has been written 
down. The t part differs from equation to equation in the family of solvable equations 
associated with the AKNS system. 

1.1.2. The intermediate equation. Equations (1 .3 )  with T replaced by A:' and P:, Q: 
replaced by PA, QA respectively determine { P I ,  Q'},  

PA = ( k +  aoro)h + (-2aok - airo+ qo+ ao,,)e+ rof  

QA = (A0 + aoCo)h + ( ao,, - 2aoA0 + Bo - aiC ) e + CO$ ( 1 . 1 1 )  

The equation { P I ,  Q'} is identically zero. Observe that if (PA, QA) is to define a 
non-trivial { P ' ,  0') then PA and 0; must only be functionals of the variable ao. 
Therefore put 

uo,x - 2a0k - airo+ qo = 0 ao,, -2aoAo+ Bo-aiCO=O. (1.12) 
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Eliminate ( r , ,  qo)  and their derivatives from these equations and we get the intermediate 
equation. The first equation in (1.12) is the Miura transformation for the AKNS system. 
In particular, we have the three cases 

(i)  ro= -1 

(ii) ro = &qo = ~ c j ,  

( i i i )  ro = &do & = + I  

for which 

(i)  

(ii) 

(iii) 
Equation (i)  on rescaling ao+ k- 'ao  is the Gardner transformation and (ii), ( i i i )  are 
the corresponding transformations in the other cases. 

qo = 2aok - a i  - uo,x 

40' (2aok - a o , x ) / ( l -  &a i )  

qo = (2eaidoE+2a,k - &a&io,, - ~ , , ~ ) / ( l -  a i d ; ) .  

2. The family of factorisations associated with the Kdv equation 

In this section we shall derive a more invariant way of solving the factorisation problem 
and consider the case (i)  for the Kdv equation in some detail. This will enable us to 
see that the method can be extended an arbitrary number of times and consequently 
defines a new type of hierarchy which can be associated with a given solvable equation. 

For the Kdv equation 

qr + 6 q q x  + q 3 x  = 0 

Ao= ( -4k3-2kqo-q , , , )  

( 2 . 1 )  

the coefficients of @, are 

B O =  (-4k2q0-2kq0., - 2 d -  ~ 0 . 2 ~ )  
( 2 .2 )  

CO = 4 k2  + 2 qo . 
Then a ,  satisfies the equation 

uo,r -6a;ao,, + 12ka,ao,, + = 0. 

We have the following structure: 

(PA, Qh) 

To check for consistency we need to show that A i o  can be defined so that T:= 
A i o  0 A i o .  From (1 .7)  we get 

TO, = ( k  + so) El 1 + f ( q 0 +  41)En - E,, + ( - k  + so)& 
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where 

so := +(ao - Jl0) J10:= -lxW (41 - 90) dY 
(2.4) 

a0 = P11V1 U1 = -02 P1= -P2.  

( 4 , + 4 0 ) x = ( 4 1 - 4 0 ) ( ~ o - J l o ) .  (2.5) 

The ABT for the Kdv (2.1) is 

If we use this then we have an alternative expression for so. From the definition of 
so and (2.5) we get 

2sos0,x = - t (41-  40) ( "0  - J l O )  = -+(so + 41)x  (2.6) 

so= E r Y i - f ( q o +  41)11'2 (2.7) 

so that 

and yi is an arbitrary integration constant. 

given by 
Therefore for this case we have from (1.4) that the Gauss decomposition of is 

A:'= A+(~(qo+ql ) ( so+  k ) - ' )  

A i o  = A-( so + k,- 1 ,  ( yi - k2) (  so + k ) - ' ) .  
(2.8) 

A ;O 
We now use A:' and check that (PA, QA) + (Py ,  Q y ) .  Consistency requires that E = 1 
and y i =  k2  so that AOo(k2 = yi) and T:(k2 = yi) are singular. However (1.3) still 
defines the ABT for the Kdv equation. From (2.7) and (2.8) it follows that 

a,= yo-so Qo,t -6ah0 ,x  + 12Yoao.x $- a0,3~ = 0. (2.9) 
We have chosen +yo in (2.9), and there is no loss of generality since yo+ -yo gives 
the other equation. 

We also have 

( E ,  Q:) + (PA, Q3 
(PA, Q3 + (e, Q?) 

40 = 2aoyo - a i  - QOJ 

41 = 2aoyo - a i+  a0.x. 

(2.10) 

Thus the intermediate equation is associated with the singular transformations T,"( k = 
*yo). Consider the existence of the following transformations: 

(PA, QA) ( p ; ,  0:) 

\ '  \ \ A i 0  / "\ \ A: 

Ai/ ' \ \ \ 

\ 

\ Y 

-b (Py,Q;)  -------- + ( E ,  Q3 (P,", 0:) ------ 
7% Y o )  C(Y0) 

which are to be used to define an ABT for {PI, Q'}. Taking into account equation (2.9) 
we have the decompositions ATo:= A+(al), A.':= A-(2y0-a0, - 1 , O )  from which it 
appears that we get the pair of equations 

(a,+ a l l x  = P y O -  (ao+ adI(a, - ao) 
(2.11) 

( ao + ai 1 t = [2 YO - ( ao + a 1 )I [6  'YO( a i  - a - 2 ( ai  - a ;) + ( ao - a 1 ) zX]. 
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Observe that the x part of this transformation follows directly from (2 .10) .  However, 
(2.11) is not an ABT for the {PI, 0') equation. This can be traced back to the fact that 
we have moved outside the space of allowable transformations (AGO is not an element 
of G L ( 2 ) ) .  Notice that in general the Gauss decomposition is then no longer unique. 
However, it is apparent from the construction that T:E G L ( 2 )  for all values of k except 
k = f yo ,  i.e. the singular transformations are a limiting value of well defined elements 
of G L ( 2 )  with unique Gauss decompositions. 

We conclude the following: ( i )  intermediate equations are determined by the 
factorisation of singular gauge transformations which are obtained as limiting forms 
of non-singular gauge transformations; (ii) the singular gauge transformations factorise 
into a singular and non-singular part which belongs to the gauge group. 

We can generate an ABT for (2.3) by using the following diagram (broken lines 
denote singular transformations): 

In the diagram and in the rest of the paper TJ (S')  will denote a non-singular 
(singular) transformation. The superscript j will refer to the j th  intermediate equation 
withj  = 0 denoting the 'seed' equation-the Kdv in this case. The non-singular transfor- 
mation defining the ABT for the first intermediate equation (2 .3 )  is TA:= 
ATo. T:o(A,+O)-'. Since A ~ o : = A + ( a o ) , A : o : = A + ( a , )  and T y = ( k + s , ) E , ,  
+ ( y :  - s : )E, ,  - Ell + ( - k  + S , ) E ~ ~  where 

2 
SI := [ Y : - f ( s o -  q2)11'2 

q2 = 2ka, - a : -  a , , x  

qo = 2ka0 - a ,  - ao,x 

k 2 =  yg 
(2.12) 

equation (1 .3)  gives for the ABT 

( a,  + s, Ix = 2 ka, - r: + s: - a t  

(sl - a J X  = y: - s: - 2ka2+ a :  

y: # k2 = y;. 

(2.13) 

These two relations are consistent since subtracting them results in an expression which 
is identically satisfied through the definition of s, . Therefore the x part of the ABT is 
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given by the first equation upon substituting for s1 and using the Miura transformations 
defined in (2.12). Explicitly, the ABT (2.13) for equation (2.9) is 

[ y;+$(a;+ C I ~ ) + ~ ( U ~ +  al)x - k(aI + u O ) ] " ~  

= - ; ( U , -  U , )  - 5  (a : -  ai)  dy - k (ao- a , )  dy k 2 =  yg. 

(2.14) 

In particular, if we put k = 0 then we obtain an ABT for the modified K d v  equation 
(equation (2.3) with k = 0 ) .  Since the modified K d v  belongs to the AKNS system it 
might be thought that the transformation (1.26) can be constructed from the elementary 
Backlund transformations defined in (1.9). However, if we consider the corresponding 
maps T of the fundamental solutions of the zero-curvature representations, then it is 
clear from (1.5) and (1.11) that first we have to gauge transform the fundamental 
solutions corresponding to the solutions a,  and qo of the modified K d v  equation in the 
two different representations. A calculation shows that they are related by a k- 
dependent (Backlund) transformation which is necessarily distinct from the elementary 
Backlund transformations of the AKNS system. Thus special solutions obtained from 
(2.14) should exist, outside the class of special solutions obtained directly from the 
AKNS system ( r  = E q ,  E * 1; E = 1 corresponds to the M K d v  obtained from (2.3)). We 
have not investigated the problem of canonical representations in this paper, but if 
we start with a,  = 0, equation (2.14) can be explicitly solved in the k = 0 case to give 
a singular solution. This is best done by using (2.13)(i) s,,,-s:+ y ; = O ,  s1 = 
-yl coth y l (x+c( t ) )  followed by (2.13)(ii), a,,,+ a:=2y: cosech2 y l ( x +  c ( t ) )  which 
gives 

a l = - 2 y l  cosech28+tanh2 O(x-y;'tanh 8 + d ) - '  (2.15) 
where 8 = y l ( x + c ( t ) ) ,  c ( t )  = -4y:t and d is a constant. The function c ( t )  is deter- 
mined either directly from the equation or from the t part of the Backlund transfor- 
mation. 

The non-singular transformation defining the ABT for the first intermediate equation 
was shown above to be TA:= A T o o  T:O(A;~)-'. The next intermediate equation is 
therefore obtained by factorising the singular transformation SA:= sing TA = A;' 0 A i ' .  
This is given by A i '  = A+($J, A i '  = A-(go, -1, h,) with 

I: I: 

fo= - ~ o + [ y : -  S:+ al(sl - k ) ] ( k +  SI - ~ 1 ) ~ '  

(2.16) 

Consequently SA = TA( k2  = Y:), k2 = y i  and so as in the previous case there are two 
possibilities and we shall restrict ourselves to the case yo = k = y1 . The intermediate 
equation is then determined from (1.3) using T = A i ' .  This gives 

go= ( k +  SI - a , )  ho = (7: - k 2 ) (  k + SI - aI)-' k 2 =  yg. 

~ ~ = ( ~ o - ~ ~ - f ~ ) ~ + [ f ~ , , + ~ f ~ ( ~ ~ - ~ ~ ) + f ~ ~ ~ - ~  
O:=[Ao+(ao+f , )~oIh+[f , , ,  - 2 f o ( ~ o + a o ~ ~ ) - f : ~ ~ l e +  C,J 

(2.17) 

A-'  
Then the map (Pi, Q;) 2 (Pi, Qt) requires that 

f 0 , x  + 2fo(ao - Yo) +f: = 0 

u - - l  ' U  

f 0 . r  - 2fo(Ao + ao Co) = 0. (2.18) 
The first equation with fo = e ' 0  is 

o - 2u0,x -5e O +  yo (2.19) 
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so that the next intermediate equation { P 2 ,  0') is 
U,+ u 3 x - ~ u x + 6 y ~ u x - ~ u ,  1 3  e2 '=0 

or 

(2.20) 

The process can be repeated an arbitrary number of times and so defines a new 
hierarchy which can be associated with the K d v  equation. If we let U; denote a j th  
variable which satisfies the ith intermediate equation starting from U: then the intermedi- 
ate equations and their Backlund transformations can be derived from figure 1. 

The reverse (as opposed to the transpose) diagram arises from the factorisation 
T=2\'2\- and in this case we get 

s: 3: 
and the diagram corresponding to figure 1 is easily obtained. The intermediate 
equations are invariant under this operation. 

4 
Figure 1. The hierarchy of intermediate equations and Backlund transformations associated 
with the KdV. Moving between variables connected by an oblique line to the right 
corresponds to a transformation to the next intermediate equation, causing the previous 
ABT to become singular. This requires that the component of the transformation arising 
from the ABT of the KdV should be singular. The KdV transformations are the vertical 
lines in the diagram and a singular transformation is denoted by a broken line. 
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The intermediate equation { P3, 0') is associated with the singular transformation 

(2 .21)  

From the diagram it is clear that Si= T i ( k  = y3),  k2 = y i ,  where as usual we only 
consider one of the possibilities. The associated intermediate equation is given by 

derived from 

Ti:= A i '  o Aloe e o  ( A i o ) - ' ( A i ' ) - ' .  

(2 .22)  

The first equation in (2 .22)  can be resolved to give 

u 0 . J  U0 + U0 -- -fo + f o , x / h  (2 .23)  

so that in terms of the potential do = I" uo dx, 

fo = -[ln(e@ - a)] , ,  (2 .24)  

where the function a (  t )  is arbitrary. Although we can find a Backlund transformation 
and a zero-curvature representation for the new function 4 the corresponding equation 
is not very interesting since if we put C#I = ln(e' + a )  then (2 .24)  corresponds to the 
introduction of a potential function. We shall call such transformations trivial. 

Proposition 1. In the hierarchy of intermediate equations associated with the Gauss 
decomposition of gauge transformations of the type considered in this section for the 
K d v  equation U, - 6uu, + u3x = 0, the only non-trivial equations are 

ut - ~ u ' u ,  + I ~ ~ u u ,  + ~ 3 ,  = O  

+6k2u, -3  u,u'=O. 

The proof is straightforward since for the nth intermediate equation P," = 

( k  U ' ' ) ) / I  -fwhere U(')= go, U(')= U , ,  U(') =fo and the Miura-type transformation 
defining the nth equation is 

The result is established by induction. 

3. Some intermediate equations for the AKNS system 

For simplicity we shall only consider two examples of case ( i i )  given in 0 1 .  Case (iii) 
is similar but more cumbersome to write out explicitly. 

(ii) 
2 ~ k  - U ,  

q = g  E = * l  

As an example we have for the M K d v  q, + 6 ~ q ' q ,  + q3, = 0 with E = - 1 ,  

A = -4k3  - 2 k q 2  B = - 4 k 2 q - 2 k q , - q z x - 2 q 3  

C = 4 k 2 q  - 2kq, + q2, + 2q3.  
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Put b = 2 a / (  1 + a 2 )  = sin U ;  then we get 

u , + u 3 , + ~ u : + 6 k 2 u ,  sin2 u = O  

or 

In [ 5 ]  this is called the modified-modified K d v  equation and a linear deformation 
problem was directly derived for it in [6]. The sine-Gordon equation 

U,, = sin U 

B = ( 1 / 4 k )  sin U 

q = -1 2 U, A = ( 1 / 4 k )  COS U 

C = ( 1 / 4 k )  sin U 
(3 .3)  

can be shown to give the equation investigated by Kruskal [7], 

U,, = (1 - k2u:)”* sin U a =tan $U. (3 .4)  

The next intermediate equation is determined from the equations 

a 1 , , - 2 k a ,  - 2 a , a , r o - a ~ r , = 0  

U I , ,  - 2 U 1 A0 - 2 U U, CO - U CO = 0. 

The first equation in ( 3 . 5 )  for case (ii) is 

( 3 . 5 )  

(3 .6)  

so that it follows that the equation for a, given by the second relation in ( 3 . 5 )  will 
still involve a,. The transformation is still a Backlund transformation (this is the 
situation which usually arises in the theory of Backlund transformations [SI), but we 
shall not consider transformations of this type. 

4. Factorisation of n-component systems 

The following points follow immediately from the previous studies. Let Y, = PY, 
Y, = QY define a zero-curvature representation of { P, Q}; then if there exists a gauge 
transformation T (  k )  such that Yl = TY, defines an ABT for { P, Q }  (i) the intermediate 
equation is associated with the unique transformation A+ where S (  k )  = sing T (  k )  = 
A-A+ and det S ( k )  = 0 = det A-; (ii) At  factorises, A+ = II,,, A’(a,) where 

A+(%,) = I + a,E, 
A +  A+ 

(iii) if diagA-=Z:=, a,,E,, and P:+PA, Qg-QA then PA and QA are lower 
triangular. 

Point (iii) follows from 

P Y A - = A i + A - P A  (4.1 ) 

where P: PA, since under the conditions (iii), PYA- = A-. 
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4.1. Two-component systems 

As a consequence of point (iii), the Miura transformation can be written directly for 
all two-component zero-curvature systems. As an example, the Ernst equation [9] 

2 E x f + p - 1 ( E , + E i )  = 2 f 1 E , E f  (4.2) 
where E = f +  i$, x = p + iz, is associated with the linear problem Y, = PY, Y ,  = QY 
for which [lo] 

P = i f l ( E x E l l  + y1/2ExE12+ &,EZI+ y 1 ’ 2 ~ x E 2 2 )  

Q =&‘(E,Ell + y-”’FfE12+ &,Ez1 + y - 1 / 2 ~ , E 2 2 )  
(4.3) 

where y = (1 - 2ikZ)/( 1 + 2ikx), k E C. 
The Miura transformation is given by 

- a ) (  7 - 1 / 2  - 6) ( I -aE)  

(1-an) 

(4.4) 

E, = 

The intermediate equation is obtained from (4.2). 

4.2. Three-component systems 

A three-component zero-curvature representation can easily be obtained for the scalar 
Lax equation L, = [A, L] defined by the L operator 

L = a’, + u,a, + u0 ( 4 3 )  

and with, for example, 

A = a;++ul .  (4.5b) 

The factorisation of this operator through first-order operators has already been 
investigated in the literature Ell, 121. Our purpose here is to derive the result from 
the equivalent zero-curvature representation. A straightforward approach gives for 
L$ = k3$ the system 

Y,=[E,2+E23+(k3-uO)E31-~1E321Y (4.6) 
which does not admit an ABT gauge transformation T ( k ) .  Therefore transform (4.6) 
using 

6J = 1. (4.7) 3 W = ( -wZk2E11 - wkE12 - E13 + kE2l- E22 + E31) Y 

Equation (4.6) transforms to 

w,=p:w 
(4.8) 

P:=  h E 1 1 -  uIElz+ (uO+ kuI)E13+ Ezl  + o’kE22- E,,+ kE33. 

The zero-curvature representation of PA obtained from the gauge transformation 

A+ = Z + u l E l z +  a2E13+a3Ez3  (4.9) 
is 

PA= (h + a1)Ell + s Z E ~ ~ +  ~3E13 + (h2 - a3 - U , ) E ~ , +  ~ g E 2 3  - E,,+ ( k  + ~3)E23 
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with 

s 2  = a,,, + b ( w  - l)a,  -a :  - a, - U ,  

s,= u o + k U l + k ( 1 - w ) a 2 - a , a 2 - 4 , a 2 + a 2 , x  (4.10) 

s6= a3.x + k (  1 - w 2 ) a 3 -  a,+ a:+ aIa3. 

Observe that to obtain a non-trivial result we can put s2 = 0, s, = 0, s6 = 0 so that 

a2 = U,,$ + k(1- w 2 ) a 3 +  a:+ ala, 

U ,  = cl , ,$ - U,,$ - a: - a: - ala, + k( w - 1 )[ w a ,  + ( w  + l )a , ]  

U , + k U ,  = -U3U,,,-U,,2,-2U,U3,,+U,U:+U:U, 

(4.11) 

-k ( l  -w) [ (2+w)a3 ,$+k( l  - w 2 ) a , + a : - w a , a 3 ] .  

The last two equations furnish the Miura transformation for this system. It is the same 
as that derived earlier ( a ,  = -y  + z, a, = y + z, k = 0 in [ 113). The next intermediate 
equation is obtained by factorising the gauge transformation defining the ABT for 
( P I ,  Q ' )  where 

(4.12) P:, = (b + a, )E , ,  + E 2 ,  + ( kw2 - U 3 ) E 2 ,  - E 3 2 +  kE33. 

If we use 

A:'= I + b , E , , +  b2E1,+ b3E23 (4.13) 

then we find that 

P i =  (kw + U ,  + bl)El l  + E 2 1  + ( b2 - U ,  - U, - b, - b3)E22 - E 3 2 +  (k + U,+ b,)E33 
(4.14) 

and the x part of the Backlund transformation is given by 

b,,, - b2- 6 , ~ 3 - 2 a , b , -  b:+ kw(w - 1)bl = O  

b3,, + 2~3b3  - b2 + U ,  b, + b: + b, b, + k( 1 - w2)bj = 0 (4.15) 

bz,, + b 2 ~ 3  - U I b2 - b, b2 + k( 1 - w ) b2 = 0. 

However, this Backlund transformation is of the general type discussed at the end of 
9 3. A Miura transformation can be obtained from it when b, = 0 and then we obtain 
the following cases. 

( i )  a ,  # 0, a, # 0, a, # au3: 

al=f(2b, , , /b ,+ b,,,/b,+ b,- bI-3wk) 

U, = -:(bl,,/ b,+2b3,,/ b, + b, + 2b3+ 3k).  

(ii) a, = 0, a, # 0, then bl = 0 and 

a, = -+[ b3,x/ b3 + b, + k(  1 - U')]. 

(iii) a3 = 0, a ,  # 0 then bl = 0 and 

aI=-[b3,, /b3+b,+k(l  - w ' ) ] .  

(iv) a, = au, then b, = 0 and 

(4.16) 

(4.17) 

(4.17') 

(4.18) 
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With the operator A defined in ( 4 3 )  the corresponding system W, = PZW, W, = Q: W 
defines the Boussinesq equation 

u1 = U. (4.19) 

The Miura transformation (4.1 1) then defines the modified Boussinesq equation (i), 
the modified Sawada-Kotera equation [ 131, (ii) and (iii), and the modified Kupershmidt 
equation [12] (iv). The corresponding intermediate equation (4.16)-(4.18) could then 
be called the modified-modified equation. At the next factorisation, general Backlund 
transformations are obtained. 

-1 o,, = -f( + 2 u 3  with 0 - 2 %  + w 

5. Comments and further extensions 

It is clear that this process can be applied to an arbitrary zero-curvature representation 
of a solvable equation which admits a gauge transformation defining the ABT. In 
general, it appears that only the first intermediate equation is obtained from a Miura 
transformation. However, the technique does suggest a classification scheme which is 
closely related to that used in the classical papers on the subject [14]. In this work 
ABT and Miura transformations are classified as Backlund transformations of type I11 
and 11, respectively. Classify families of solvable equations by hierarchical diagrams 
of the form given in figure 1. The Kdv hierarchy has the Kdv as the lowest member, 
but is it possible to continue the diagram backwards, i.e. find a solvable equation which 
has the Kdv as its factorisation? Incidentally, it is worth stressing that figure 1 constructs 
zero-curvature representations and ABT for all members of a hierarchy. 

There are two possible ways of extending the hierarchy. The zero-curvature rep- 
resentations given here are associated with the fundamental representations of sl( n, C )  
so that we could use any other irreducible representation of the algebra. In this way 
we can associate an m-component, m > 2, zero-curvature representation with the 
two-component AKNS system, for example. This appears to give general Backlund 
transformations on factorisation, rather than Miura transformations. Another possibil- 
ity is to canonically embed several copies of a particular zero-curvature problem into 
a zero-curvature representation of higher dimension. We shall consider as an example 
the Kdv zero-curvature representation P:( k ) ,  Q;( k )  given in § 2. Then p;(kl) o P;( k 2 ) ,  
Q;(k,)O Q:(k2) E sl(4, C )  (these have the same solution qo of the Kdv equation). Now 
factorise the ABT T of the associated larger system (in this case the four-component 
AKNS system [ 151). Let sing T = A-A+, 

(5.1) 
and derive all viable restrictions. Observe that the A- map need no longer preserve 
the block structure of the embedding. All that is required is that T is an ABT for the 
general system. An example of this type is provided by the non-linear Klein-Gordon 
equation e,, =exp28-exp(-8) which is a restriction of the system e,, = 
exp 28-exp(-O) cosh 34, 4,, = exp(-e) sinh(34). The ABT of the system restricts to 
a Backlund transformation of the Dodd-Bullough equation (4  = 0) but it is not an 
ABT; it generates solutions of the system (4 # 0) [ 161. 

(i)  a,= a3 = a4= a5 = O  

A'(a) = I + a, E12 + a2EI3  + u3E14+ a4E23 + a5E,,+ a,E3, 

From (5.1) we derive the viable restrictions 

q = -a:+2k,a, - al., q =  -ab,,+2k2u6-aZb 
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(ii) a ,  = u6 = 0, a ,  = ( k 2  - 2 k , ) a 4  

q = (1/a2)[-a2,2,+2kIa2,,+(k:- k:)a,l 
( 5 . 2 )  

0 3  = 0 2 J  + (k2-  k , )a*  U ,  = ( k 2 - 2 k , ) - ' [ ~ 2 , ,  + (2k2 - kI )a2] .  

The first case is the canonical embedding case whereas the second case gives the Miura 
transformation 

= y,  - y 2  + 2 ~ k z y  a , =  A exp( -Ix [ y - ( k ,  + &k2)1 dx) & = * l .  (5.3) 

It is clear since a, = a, = 0 in the second case that it is the first case which can again 
be factorised (PA= PA(k,,  a , )@PA(k , ,  a,) where PA(k, a )  is the sl(2, C) matrix PA 
defined in § 2 ) .  Let A+( b )  define the factorisation using the notation introduced in 
(5.1). Then, as before, there are two viable restrictions: 

(i)  b, = b3 = b, = b, = 0 

1 a - - ( ( - b 6 , , + 2 k 2 b 6 - b ~ )  1 
- 2b6 

U -- ( -bI , ,  + 2 k , b l -  b : )  
' - 2 6 ,  

(ii) b ,  = b3 = b,  = b, = 0 

+ a 6 )  = [ b4.x + ( k l  + k 2 )  b4+ b 2 1 .  
b4 

Put b2 = exp 1" z dx and to simplify calculations z = e" then from (5.2) (i)  and (5.4) 
(iia) we get 

a ,  =![-U, + 2 k ,  -eu - ( k :  - k:)  e-"]. (5.5) 

Then since a ,  satisfies (2 .3)  with k = k,  or by using the t part of the ABT we get 

~ , + ~ 3 , + 6 k ~ u , - ~ u ~ - ~ u , [ e " + ( k ~ -  k:)E"l2=O 

or 

Put b2bT1 = -e-h and obtain an expression for a,  in terms of h from (5.4) (ii). This 
expression is (5.5) with k2 = k ,  and consequently h satisfies the first equation in (5.6) 
with k,  = k, .  Therefore the appropriate parametrisation for A+( b )  is in terms of h and 

Clearly this process can be extended by further factorisations and by embedding 
n copies of the K d v  zero-curvature representation in the 2n-component A K N S  problem. 
The process via figure 1 gives zero-curvature representations and ABT for each of the 
intermediate equations. 

In the process of writing this paper, [17] was brought to my notice. I n  this paper 
a classification is given of all equations which can be related to the K d v  equation by 
a transformation of the kind q = F ( a ,  a,, . . . , a n x )  where q satisfies the K d v  equation 
and a satisfies an equation of the form a, = a3,  + f ( a ,  a,, a2, ) .  It is straightforward to 
derive the additional equations listed in this paper by the embedding method of this 
section. 

Z. 
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In [18] deformations of integrable systems are discussed, but this type of 
classification is different from the one given here which is simpler in that all that is 
required is that a Backlund transformation exists. 
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